长江书屋

第一百八十七章 读怀尔斯读出花了(第1页)

天才一秒记住【长江书屋】地址:https://www.cjshuwu.com

夜深人静,远处的钟楼敲响了十二下,窗外的城市灯火越发稀疏。

陆兮的房间里,台灯下的光洒在凌乱的书页上,笔记本摊开在她面前,旁边堆满了数论和几何的参考书。

白色的便签贴满了墙壁,上面画满了公式和箭头,像是一张纵横交错的数学地图。

怀尔斯如何通过模形式连接如此复杂的数学结构这个问题,让她夜不能寐。

事实上,这已经是她研读怀尔斯的证明的第二十九天。

摊开在她面前的的不但有原始论文,还有谈岩流形、模形式理论和椭圆曲线相关的参考资料。

她正专注于理解证明中最关键的一环:如何通过谈岩流形将半稳定椭圆曲线与模形式建立起对应关系。

时间一分一秒过去,证明中复杂的概念逐渐在陆兮的脑海中清晰起来。

特别是在理解德林变形理论如何与模形式的p进性质联系时,她忽然想到到了一个有趣的可能性。

如果将拉曼努金模形式的情况套用进来,是否存在一种更直接的几何解释?

这个想法让她士气大振,开始奋笔疾书。

首先,她将拉曼努金模形式的特征多项式写在纸上:

P(x)=x^2+ax+p^(k-1)。

这看上去只是一个简单的二次多项式,但经常回味这个“二次多项式”

的人都知道,每一个系数都深藏着模形式与椭圆曲线之间的密码。

如果把这些多项式比作一座大桥,那么每个素数p就像桥墩,而模形式的Hecke特征值便是桥梁的主要结构。

其中k是权重,p是素数。

这个多项式与椭圆曲线的局部L因子之间存在某种深刻的联系。

但陆兮没有停在表面的代数关系上。

她开始思考这个多项式在p进分析中的行为。

如果能在p进范数下找到一个合适的度量空间,也许可以直接从几何角度理解模形式的Hecke特征值。

她的笔在纸上快速移动:

“考虑映射φ:X_0(N)→J_0(N),其中X_0(N)是模曲线,J_0(N)是其雅可比簇。

在这个框架下,拉曼努金模形式应该对应着J_0(N)中的某个特殊子空间……”

陆兮停下笔,凝视着自己写下的公式。

总觉得这个公式似乎触及到了什么本质的东西。

她思索片刻,忽然想起李教授提到过的一个观点:模形式的美不仅在于其代数性质,更在于它在各个数学分支之间架起的桥梁。

打定主意,她开始构建一个有意思的理论框架。

这个框架的核心引入了一个新的几何结构,她暂时称之为调和度量空间。

在这个空间中,拉曼努金模形式的算术性质可以被翻译成几何语言:

“定义一个新的度量d(x,y)=sup{|f_p(x)-f_p(y)|_p},其中f_p是p进展开系数……”

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)


新书推荐

豪门拖油瓶,我靠画符爆红全网绝世保安玄学大佬只想当咸鱼是他唯一的光极品捉妖系统快穿之路人不炮灰传奇篮神特种岁月重生之都市邪仙武林店小二(系统)当幸运值为max时穿成窝囊小姐的贴身丫鬟我的未婚妻是主播凌天至尊枭门邪妻好男人他有金手指[快穿]异世界:狼人领主,我靠魅魔发家绝色占卜师:爷,你挺住!万界时空穿越者影后重生:厉先生撩妻成瘾我和大圣是兄弟赤骨天梯我当大圣姐姐这些日子,操碎了心我的狗狗公司闻名世界氪金养美人,我躺着赢麻了