天才一秒记住【长江书屋】地址:https://www.cjshuwu.com
tn=((labels==zero)*(pred==zero)).sum()
tp=((labels==one)*(pred==one)).sum()
fp=((labels==zero)*(pred==one)).sum()
fn=((labels==one)*(pred==zero)).sum()
train_sum_fn+=fn.item()
train_sum_fp+=fp.item()
train_sum_tn+=tn.item()
train_sum_tp+=tp.item()
train_sum_loss+=loss.item()
train_sum_correct+=acc.item()
train_loss=train_sum_loss*1.0len(trainDataLoader)
train_correct=train_sum_correct*1.0len(trainDataLoader)batch_size
train_precision=train_sum_tp*1.0(train_sum_fp+train_sum_tp)
train_recall=train_sum_tp*1.0(train_sum_fn+train_sum_tp)
writer.add_scalar(“trainloss“,train_loss,global_step=epoch)
writer.add_scalar(“traincorrect“,
train_correct,global_step=epoch)
writer.add_scalar(“trainprecision“,
train_precision,global_step=epoch)
writer.add_scalar(“trainrecall“,train_recall,global_step=epoch)
ifnotos.path.exists(“models_aug_CNN“):
os.mkdir(“models_aug_CNN“)
torch.save(net.state_dict(),“models_aug_CNN{}.pth“.format(epoch+1))
scheduler.step()
sum_loss=0
sum_correct=0
test_sum_fp=0
test_sum_fn=0
test_sum_tp=0
test_sum_tn=0
fori,datainenumerate(testDataLoader):
net.eval()
inputs,labels=data
inputs=inputs.unsqueeze(1).to(torch.float32)
labels=labels.type(torch.LongTensor)
inputs,labels=inputs.to(device),labels.to(device)
outputs=net(inputs)
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!