天才一秒记住【长江书屋】地址:https://www.cjshuwu.com
不只是他,另外两人也感觉到了一种紧迫感。
如果真有人用一种前所未有的方式证明了一系列关于素数方面的难题,这对于许多一直在研究素数的数学家来说,并不完全算一个好想消息。
毕竟没人愿意当背景板,不信的话可以去问山姆跟弗兰克。
“没事,先问问吧。
我跟乔喻没有过什么交往,贸然给他发邮件的话,可能会有些失礼。
拜托你了,张教授。”
陶轩之想了想说道。
张远堂笑了笑,点头应下。
失礼只是借口,这些天才都是骄傲的。
……
华夏,燕北大学。
此时的乔喻的确是在做大洋彼岸的教授们所关心的工作。
验证的工作他可以不去管。
但有些工作他需要做在前面。
乔喻此时正在做的工作,就是将一系列他打算用模态空间框架解决的问题,从经典表述转化为模态空间下的表述。
比如孪生素数猜想的经典表述是存在无穷多对素数(p,p+2),其中素数p和p+2都是素数。
那么在多模态空间下的表述就要转化为三个问题。
1、在模态空间M中,存在无穷多对模态点(r_p,r_p+2),使得模态距离d_m(r_p,r_p+2),满足固定约束。
2、模态密度函数ρ_m(r)在满足孪生素数条件的模态空间区域内累积为无穷。
3、孪生素数对的分布形成模态路径Γ上的等间距点,并在模态空间中表现出周期性和对称性。
简单来说就将一个经典的数论问题,分解成了三个几何问题。
如果他能把这三个几何问题都在模态空间下证明了,就代表着他完成了孪生素数猜想的证明。
当然前提是他的广义模态数论公理体系能够得到数学界的广泛认可,且能证明这套公理体系的确能够在几何跟数论之间相互转换,以及始终保持可验证性。
不过话又说回来,验证工作有人做,这些转化工作只有他亲自操刀了。
毕竟将问题进行转化,要求对这套公理体系了解的极为清晰,以及有着极高的数学洞察力。
同理,想要解决黎曼猜想也是一样的步骤。
先把经典化的表述转化成这套框架下的几何表述,并对问题进行分解,然后逐个证明。
这一步其实进行的很顺利。
甚至黎曼猜想的转化比孪生素数猜想要更为简单。
而且在经典解读中,所有零点分布在一条线上。
而在模态空间的分布则是在一个超平面上。
当然转化完成不代表着马上就能解决问题,要做到这一步还有许多东西要定义。
比如模态密度、卷积等等几何工具。
总之把问题几何化、模态化之后,乔喻也就知道了想要解决这个问题需要哪些工具,再到框架下去一一做证明跟转化。
乔喻也并不像对面那些教授想的那样,甚至跟田导、袁老想的都不一样,他压根就没打算先把整个理论框架搭建完整。
他的打算是按需搭建。
证明上界猜想需要哪些工具,先把所需的工具以定理的形式推导出来,然后把问题证明了。
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!