长江书屋

第103章 少年得意挥斥方遒(第8页)

天才一秒记住【长江书屋】地址:https://www.cjshuwu.com

乔喻扭头正想跟薛松表达一下他的想法,突然发现老薛正盯着刚进来的三人表情也挺奇怪的。

于是小声问道:“薛老师,你咋了?”

薛松回过头,面无表情的轻声说道:“等会你好好讲,别浪费了田导给你搭的台子!”

乔喻听懂了这句话的言下之意,便立刻将目光看向那个他还不认识的人。

对他来说很简单的推理。

田导早就明确了会邀请罗伯特教授参加这场研讨会,所以这本就是意料之中的事情,老薛再次强调别浪费了田导搭的台子,只能是这个陌生人来头很大了。

不过看起来也就是个干瘦严肃的小老头,除了有些气场,好像也没什么特别的……

好在没时间给乔喻胡思乱想了,他的导师再次担任起主持人的角色。

“非常感谢大家能来参加今天这场研讨会,尤其是感谢罗伯特教授跟张树文教授能够在百忙之中亲自前来指导我的学生乔喻在数学上的一些奇思妙想。

今天这场研讨会主要讨论的问题是关于利用完备空间、模形式理论与P-进几何等工具,研究代数曲线X上的有理点个数上界问题。

好了,乔喻你可以开始发言了。”

说完,田导便坐回到了位置上,乔喻也半点不怯场,立刻站了起来。

“谢谢各位老师能来参加这次研讨会,那个,关于我一些不成熟的想法,都已经打印出来,就是大家桌面上放的那叠类似稿纸的东西。

对了,还要特别感谢罗伯特教授今天的讲座对我的启发,以及我的导师田言真教授对我的指导。

正如刚刚田导说的那样,我在近期阅读了舒尔茨教授跟罗伯特教授的论文之后,突然就有了这么一个很大胆的想法。”

乔喻话音刚落,几乎所有人都拿起了桌面上的那份报告,太简陋了,刚刚大家也就提前几分钟来到会议室,忙着寒暄去了,还真没谁拿起来认真看上一眼。

倒是坐在田言真身边的张树文跟罗伯特教授已经拿起了那本简陋的册子开始翻看。

乔喻开场白讲完了之后,已经切入正题。

“我的想法就是借助彼得·舒尔茨教授搭建的完备空间理论,利用模形式理论、-进几何和量子化同调范畴,推导出代数曲线上有理点的上界表达式。

要做到这一点,首先就需要考虑曲线X的几何背景,尤其是其亏格g(X)。

亏格是一个重要的拓扑不变量,表示曲线的几何复杂性。

对于亏格g>1的曲线,Faltings定理告诉我们有理点数量是有限的。

但这还不够,因为我们都希望得到一个具体的上界。

根据几何分析亏格越高,代数曲线的复杂性增加,这意味着有理点的数量相对减少。

所以我的初步猜想是:N(X)≤C(g)。

然后我会从几个设想来论证这个结果,虽然这个结果我认为是没错的,但常数C的具体公式,我暂时还无法证明出来,但我想到了几个很有意思的方法来推导常数C的结果。

只是这些方法还没能证明,所以希望各位老师们能给我些启发。

首先,我们引入模空间,设X是亏格为g的代数曲线,其模空间Mg参数化了所有亏格为g的曲线。

因为模形式与模空间密切相关,所以我理解为定义在模空间上的某些函数,它们对曲线的复杂度提供几何约束。

这样设模形式的等级为k,我们再假定存在一个常数A1,使得:N(X)≤C1(g,k)=A1gk^α……”

台下,会议室内所有的教授们都已经收起了之前轻松的心态,神色开始变得凝重起来。

要说唯一表情没什么变化的,大概就只有田言真跟薛松两人了。

这一点坐在最后面的陈卓阳能作证。

他对乔喻讲的内容没什么兴趣,所以将更多的注意力放到了对面导师跟那两位大牛的表情上。

很明显,田导的心态很放松,只是安静的看着乔喻在板书上书写,他身边的两位大佬,一位眉头拧成了川字,另一个已经拿起笔开始在文稿旁边写写画画……

陈卓阳感觉心态有点崩了……

不是吧,大家都是认真的啊?所以并不是田导想硬推小师弟,这种都没被证明的玩意儿大家也能认可?

是的,陈卓阳得知今天下午这场研讨会的时候,他是真觉得田导就是想让小师弟跟大家混个脸熟。

毕竟田导也说了,乔喻这些都还只是想法……

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)


新书推荐

美好生活从六零年代开始万界基因抢救大明朝异世界:狼人领主,我靠魅魔发家西游记:四川话版NBA禁区推土机特种岁月三国之天下无双万界时空穿越者侯门嫡女,相公宠上瘾玄学大佬只想当咸鱼师妹疯癫一笑,对方生死难料枭门邪妻事业脑咸鱼在八零快穿之路人不炮灰九龙吞珠我和大圣是兄弟懒妻教育得当,三胞胎有事就喊爹总裁大人超给力明婚暗恋全能影后的花式撩法是他唯一的光替身养猪去了[快穿]武林店小二七十年代小娇媳