长江书屋

第一百六十一章 并非逃跑(第1页)

天才一秒记住【长江书屋】地址:https://www.cjshuwu.com

如果说以前做题,陆兮瞄准的目标是IMO。

那么现在做题,陆兮享受的是数学本身。

又是一周的周六奥数辅导课。

在那一次给1班的奥数敢死队讲了拿到简单题,将简单题背后的思想延伸到巴赫猜想后,陆兮擅长讲题的名声不胫而走。

这课堂一结束,立即便有同学拿着题目上去找陆兮。

陆兮也是来者不拒。

这是一道几何题。

假设一个圆的半径为r,求内切矩形的最大面积。

这个问题乍一看似乎是一个简单的几何问题。

“设想一下,在一个圆内切矩形,矩形的长宽分别为x和y,且对角线与圆的直径重合,如何求最大面积呢?”

陆兮没有直接给出自己的答案,而是从几何的对称性入手,一步步引导同学们发现问题的本质。

由于矩形的对称性,最优解一定是在矩形的边缘与圆相切时。

她于是设定矩形的长宽分别为x和y,并假设它的对角线与圆的直径重合。

接着通过分析矩形的对角线与圆的关系,她建立了一个含有x和y的方程,进一步得出x和y之间的关系。

“注意这里,矩形的最大面积出现在其边缘与圆相切时。

通过极值法,我们可以得到长和宽之间的关系。

接下来,我们可以通过求导找出最大值。”

熟悉的对称,熟悉的极值思想。

方法,还是那个方法。

思想,也还是那个思想。

陆兮心中渐渐生出螺狮壳里做道场的感慨。

她的声音清澈得来有一股子迷之让人信服的权威。

这导致她根本没有时间做什么思想延伸,因为下一道题几乎是无缝递了过来。

硬币反转,嗯,概率问题。

假设一枚硬币被投掷了n次,计算在n次投掷中出现正面朝上的概率为12的事件的概率。

这道题难度不高。

陆兮看到题目的刹那间立即开始考虑每一次投掷的独立性。

这是一个典型的二项分布问题。

只要将每次投掷看作一个“事件”

,其结果只有两种可能——正面朝上或反面朝上。

结构化思维点亮!

接着她,注意到,问题的对称性在于“正面朝上”

和“反面朝上”

具有相同的概率。

那么问题的关键便是找到在n次投掷中正面朝上次数等于反面朝上的概率。

嗯,对称性!

最后,通过数理统计,陆兮利用二项式分布公式,推导出出现正面朝上的次数为n2的概率。

若n为偶数,所求的概率为C(n,n2)*(12)^n,其中C(n,n2)是组合数,表示从n次投掷中选择n2次正面朝上的方式。

……

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)


新书推荐

豪门拖油瓶,我靠画符爆红全网绝世保安玄学大佬只想当咸鱼是他唯一的光极品捉妖系统快穿之路人不炮灰传奇篮神特种岁月重生之都市邪仙武林店小二(系统)当幸运值为max时穿成窝囊小姐的贴身丫鬟我的未婚妻是主播凌天至尊枭门邪妻好男人他有金手指[快穿]异世界:狼人领主,我靠魅魔发家绝色占卜师:爷,你挺住!万界时空穿越者影后重生:厉先生撩妻成瘾我和大圣是兄弟赤骨天梯我当大圣姐姐这些日子,操碎了心我的狗狗公司闻名世界氪金养美人,我躺着赢麻了